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Abstract We apply the fast Padé transform (FPT) to time signals as encoded via mag-
netic resonance spectroscopy (MRS) in breast fibroadenoma. Realistic levels of noise
are considered. The conventional fast Fourier transform (FFT) is also used for com-
parison with the FPT. For N = 2048 signal points, the FFT generated uninformative
total shape spectra with only a few distorted peaks, whereas the FPT yielded con-
verged envelope spectra at partial signal length NP = 1700. To match the FPT based
at time signals sampled at N = 2048, the FFT requires N = 65536 signal points,
i.e. a 32-fold lengthening of each transient. Via the parametric FPT, at NP = 1700
all the resonances were resolved and metabolite concentrations precisely computed,
including those that were almost completely overlapping (phosphocholine and phos-
phoethanolamine whose chemical shifts are separated by 0.001 parts per million). The
multi-faceted signal–noise separation (SNS) procedure was applied through identifi-
cation of pole-zero cancellations, zero or near zero amplitudes plus the stability test
against different levels of noise. Via SNS, all the spurious resonances were confidently
identified, thus leaving only genuine metabolites in the output list. Practical implica-
tions are underscored: the high resolution of the FPT will shorten the examination
time of the patient. Using the FPT, the cancer biomarker phosphocholine, plus other
informative metabolites can be identified and their concentrations exactly determined.
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Applying the fast Padé transform to time signals encoded in vivo from the breast
therefore will be a key step for MRS to realize its potential to become a reliable,
cost-effective method for breast cancer diagnostics.

Keywords Magnetic resonance spectroscopy · Breast cancer diagnostics ·
Mathematical optimization · Fast Padé transform

Abbreviations

ADC Apparent diffusion coefficient
Ala, ALA Alanine
β-glc, β-GLC β-Glucose
BW Bandwidth
CT Computerized tomography
Cho, CHO Choline
DFF Denoising Froissart filter
DTI Diffusion tensor imaging
DWI Diffusion-weighted imaging
FFT Fast Fourier transform
FPT Fast Padé transform
FWHMax Full width at half maximum
FWHMin Full width at half minimum
GPC Glycerophosphocholine
m-Ins, M-INS Myoinositol
MR Magnetic resonance
MRI Magnetic resonance imaging
MRS Magnetic resonance spectroscopy
MRSI Magnetic resonance spectroscopic imaging
NMR Nuclear magnetic resonance
PC Phosphocholine
PCM Personalized cancer medicine
PE Phosphoethanolamine
PET Positron emission tomography
ppm Parts per million
RMS Root-mean-square
SNR Signal-to-noise ratio
SNS Signal–noise separation
tau, TAU Taurine
tCho, tCHO Total choline
TSP 3-(trimethylsilyl-)3,3,2,2-Tetradeutero-propionic acid
ww Wet weight

1 Introduction

Among women throughout the world, breast cancer is the most often diagnosed malig-
nancy and one of the most frequent causes of deaths due to cancer [1–3]. The most
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critical factor impacting upon survival is the stage at which breast cancer is diagnosed
[4]. Screening for breast cancer has been demonstrated to significantly improve sur-
vival. This is due to early detection, such that adequate and timely care can be provided
[5,6]. Intensive screening, beginning at a relatively early age has been shown to def-
initely benefit women at high risk for breast cancer [7]. Furthermore, women at very
high risk appear to prefer intensive screening rather than other available options such
as undergoing prophylactic mastectomy [8,9]. Currently, consensus is still lacking as
to the best imaging strategies for early breast cancer detection, especially for women
at increased risk [10]. There is consensus, however, that screening programs need to
be improved and made more cost effective [3].

In this paper we will address this topic from the vantage point of mathematical
optimization through advanced signal processing of relevance to magnetic resonance
spectroscopy (MRS) for breast cancer diagnostics. In order to contextualize our focus
and thereby help make a link to practical solutions, we will first concisely present a
state-of-the-art review of the imaging modalities now in use for breast cancer screening.

1.1 Breast cancer screening via anatomic imaging

Mammography, ultrasound and magnetic resonance imaging (MRI) are the mainstays
of anatomic imaging used for breast cancer screening. These are applied not only for
initial breast cancer detection, but also for staging, assessment of response to therapy
and post-therapeutic surveillance.

Mammography is most frequently used for breast cancer screening, notwithstand-
ing its rather low specificity, such that false positive results occur quite often [11,12].
Deleterious consequences of these false positive findings include anxiety and uneasi-
ness, as well as potentially deterring women from subsequently participating in breast
cancer screening programs [13]. This is especially the case among women who, on
the basis of mammographic findings, were sent for open surgical biopsy with a non-
malignant result [14].

Mammography also entails exposure to low-energy X-radiation. It has been reported
that more mutational damage may occur thereby compared to exposure to high-energy
X-rays [15]. Since it is recommended that women at high risk should start screening
at a relatively young age and do so relatively frequently, this radiation exposure is a
serious concern. Even more worrisome is that a substantial percentage of women at
high breast cancer risk are genetically susceptible to radiation-induced cancers [16,17].

The chance for false negative findings is also a concern with mammography when
breast density is high. This is often the case among women at risk, especially younger
women [10]. With poor sensitivity the chances of late detection obviously increase,
thus impacting upon prognosis.

Ultrasound examination can be helpful in improving breast cancer detection among
women with mammographically dense breasts [18,19]. However, the specificity of
ultrasound is poorer than for mammography. Consequently, even more women who
undergo ultrasound examination will be sent for biopsy of benign lesions [18].

Contrast-enhanced MRI is the anatomic imaging modality which generally has
the best sensitivity for detecting breast cancer, especially among women at high risk
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[17,20–22]. Moreover, MRI does not entail exposure to ionizing radiation. On the other
hand, MRI has lower specificity than mammography. Consequently, MRI is associated
with high biopsy rates, with the majority of cases being for benign lesions [6]. There are
several non-malignant breast lesions that are difficult to distinguish from breast cancer
on MRI. Among the benign breast pathologies that can resemble cancerous lesions
on MRI are fibroadenomas, as well as benign proliferative breast disease, papillomas,
desmoid tumors and inflammatory lesions [23–25]. Using dynamic contrast-enhanced
MRI, non-mass morphology and small lesions of the breast are also hard to identify
as benign [26,27].

By participating in intensive surveillance programs women at high breast cancer risk
appear to be reassured by the excellent sensitivity of MRI [28]. However, the increased
chance of false positive findings can adversely affect quality of life [10,29]. Moreover,
once this occurs, women may be reluctant to continue with intensive screening using
MRI. A fairly recent study [30] reports that only 58 % of women at high breast cancer
risk agreed to participate in an MRI screening program to which they were invited.
The chances of being sent for biopsy or other testing, as well as fear were among the
reasons cited for non-participation. It should also be noted that the specificity of MRI
becomes even lower after excisional biopsy [31].

False negative scans from MRI can occur with e.g. small cancerous lesions if they
do not selectively take up contrast agent. Moreover, breast cancer has been reported
to arise within benign lesions such as fibroadenomas [32]. The use of susceptibility-
weighted three-dimensional MRI may allow the utilization of phase evolution to visu-
alize microcalcifications [33]. Still, however, mammography, rather then MRI contin-
ues to be the method of choice for detecting and characterizing these diagnostically-
important microcalcifications.

Another major problem with MRI is its high cost. As a consequence, it is only for
women at very high risk of breast cancer that MRI is considered to be a cost-effective
screening method [18].

Overall, anatomic imaging modalities are insufficiently specific, generating a large
number of false positive findings. Functional as well as molecular imaging have much
to offer in this regard [34–36]. In particular, magnetic resonance (MR)-based modali-
ties, including diffusion-weighted MRI could be appropriate for breast cancer screen-
ing/surveillance, since, as noted, MR is free from ionizing radiation.

1.2 Diffusion-weighted MRI for breast cancer diagnostics

Non-malignant lesions can often be distinguished from cancer via diffusion-weighted
imaging (DWI). The random (Brownian) motion of free water is assessed, providing
insights into local tissue architecture. Since malignancy is frequently associated with
increased cellularity or intracellular density, the motion of free water molecules may
be restricted. This is reflected in a decreased apparent diffusion coefficient (ADC).
An increased ADC is usually observed with benign lesions [37]. Important exceptions
do exist however. In the breast, a low ADC is observed with fibrotic tissue or with
benign proliferative changes, whereas necrosis which may occur in malignant tissue is
associated with an increased ADC. The reason for this is that necrosis is hypocellular.
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Non-mass breast lesions are not easily evaluated with DWI [38]. Although certain
technical advances in ADC have been reported that assist in voxel positioning and
measuring ADC in breast tumors [39,40], there are substantial problems in choosing
the cutpoints and recording parameters for DWI. Consequently, the distinction between
benign and malignant breast lesions using DWI cannot yet be made with adequate
certainty [36,41].

The intrinsic diffusion properties of biological tissues can be modeled via an
extension of the scalar diffusion coefficient as a second-order symmetric and
positive-definite tensor D. Through diffusion tensor imaging (DTI) eigenvalue
decomposition is performed to diagonalize the tensor to obtain three eigenvalues
(λ1, λ2, λ3, where λ1 ≥ λ2 ≥ λ3) and three eigenvectors (e1, e2, e3). These pro-
vide a complete description of the geometric and diffusion properties of the tensor
[42]. Recent studies [43,44] applying DTI-derived vector and parametric maps indi-
cate that the breast architecture can thereby be evaluated with high spatial resolution.
Comparisons between twenty-six women with 33 cancerous breast lesions and four-
teen women with 20 benign breast lesions revealed lower (p < 0.0009) orthogonal
diffusion coefficients λ1, λ2, λ3 in the malignant lesions, with a specificity of 98 %.
More studies on larger groups of women in these two categories are expected to be
forthcoming.

1.3 Breast cancer diagnostics using magnetic resonance spectroscopy
or spectroscopic imaging

Molecular imaging via MRS or magnetic resonance spectroscopic imaging (MRSI) can
potentially provide further distinction between breast cancer and non-malignant breast
lesions. The metabolic characteristics of tissue can be elucidated by MRS, and thereby
the specificity of MRI is improved for distinguishing breast cancer from benign breast
lesions [45–47]. Often a single MRS voxel does not adequately represent the scanned
tissue. Multi-voxels assessed via MRSI can then provide volumetric coverage, and
investigations of breast cancer as well as benign breast lesions have also been reported
using MRSI [48–50].

1.3.1 Assessment of total choline via MRS and MRSI

Published results using in vivo proton MRS or MRSI with 1.5T or 3T scanners have
been recently compared for over 700 cancerous versus over 400 non-malignant breast
lesions [51]. Most of these studies have assessed the composite or total choline (tCho)
peak, with a resonant frequency at approximately 3.2 parts per million (ppm). As a
reflection of cell membrane turnover, tCho is used as an indicator of cancer [47]. A
meta-analysis [51] of MRS data based upon estimates of tCho from 1200 breast lesions
indicates a pooled sensitivity of 73 % (556 of 761) and specificity 88 % (386 of 439).
Due to publication bias, however, the authors suggest that these pooled ratings may
overestimate the diagnostic accuracy of MRS [51]. In most of the studies included in
the meta-analysis [51] an arbitrary cutpoint for the ratio of the tCho peak to baseline
noise was used as the indicator of malignancy.
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Signal-to-noise ratio (SNR) increases linearly with magnetic field strength. Thus,
higher field scanners could improve SNR, and would be expected to enhance MRS-
based diagnostics of the breast [45]. Smaller lesions could thereby be better evaluated,
since smaller voxel size could be used [52]. Contrary to these expectations, however,
the diagnostic accuracy of MRS in distinguishing benign breast lesions from breast
cancer was not found to be superior in studies using 3 T scanners [53,54] compared
to those using 1.5 T scanners [51]. There have been some published data using even
higher field (4 or 7 T) MR scanners [52,55–59]. Whereas tCho levels were significantly
elevated in breast cancer in an investigation [56] of 500 in vivo breast spectra using
a 4 T scanner, tCho was also reported as being present in many benign breast lesions
and in normal breast. On the other hand, tCho was undetectable in several breast
cancers. Considerable overlap was observed among the ranges of tCho for these three
categories of breast tissue. Although MR imaging for breast via higher field MR
scanners is reportedly feasible from a technical vantage point [59,60], the enormous
costs (roughly $1 million per tesla) [61], would bar high-field scanners from most
breast cancer screening protocols.

Overall, tCho as a single composite spectral entity does not provide sufficient diag-
nostic accuracy for breast cancer screening. On the one hand, choline may be detected
in fibroadenoma and other benign breast lesions as well as in normal breast, whereas
especially in small tumors, on the other hand, choline may not be found. During lac-
tation, choline generally appears in normal breast, although a lactose resonance at
3.8 ppm is also usually observed [62]. Importantly, breast cancer and lactation can
coexist and the former is typically detected late [63]. Another problem is that many
different cut-points for tCho have been used to define breast cancer versus benign
breast. Standardization is thus very tenuous.

1.3.2 Conventional data processing in MRS and MRSI: overlapping resonances
cannot be handled

Isolated resonances do indeed become sharper and better resolved when higher field
scanners are employed. However, peak widths of overlapping resonances are broad-
ened on spectra generated from MRS data acquired using stronger magnets [64]. This
problem is important because overlapping resonances are very abundant in MR spectra
[35], especially of the breast. Due to lipid-induced sidebands, the detection of choline
can be compromised when using higher field magnets [65]. Usually these lipids are
suppressed, since dominant fat of the breast also hampers localized shimming. By
increasing the echo time, lipid suppression can be achieved. However, lipid may be
part of the actual disease process, and thereby important diagnostic information might
be lost [66]. Other potentially informative metabolites with short T2 relaxation time
will also have decayed with the use of long echo times.

In vitro nuclear magnetic resonance (NMR) applied to extracted specimens yields
richer metabolic information, much of which is relevant to breast cancer [67]. Notably,
tCho contains several components that can better differentiate benign from malig-
nant breast tissue. Among these are phosphocholine (PC) resonating at approximately
3.22 ppm, glycerophosphocholine (GPC) at 3.23 ppm, as well as free choline (Cho)
at 3.21ppm [68]. With malignant transformation of mammary cells, two pathways,
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phosphorylation and oxidation of choline, are increased [68]. Consequently, PC is
augmented whereas choline-derived ether lipids are suppressed. A “glycerophospho-
choline to phosphocholine switch” occurs with malignant transformation in the breast.
This is associated with over-expression of the enzyme choline kinase responsible for
PC synthesis [68–70].

Increased levels of phosphocholine and elevated PC to GPC ratio are considered to
be indicators of malignant transformation of the breast [70,71]. However, the resonant
frequencies of PC, GPC and free choline are very close to one another. Moreover,
according to NMR data from extracted breast specimens [67], the much more abundant
phosphoethanolamine (PE) also resonates at ∼ 3.22 ppm and thereby completely hides
the PC peak at 3.22 ppm on total shape spectra.

Data analysis of conventional applications of in vivo MRS and MRSI relies upon
the fast Fourier transform (FFT), built into all existing clinical MR scanners. The FFT
is used to transform the encoded MRS time signal into its spectral representation in
the frequency domain. However, the FFT is a non-parametric, linear method which
can generate only a total shape spectrum or envelope. No information whatsoever can
be gleaned about the underlying components via Fourier analysis. Consequently, the
FFT cannot disentangle the overlapping resonances contained within the tCho peak.
No reliable information can be obtained about the relative abundance of the compo-
nents of tCho, i.e. PC, GPC, free choline, nor about the concentration of PE which, as
mentioned, completely overlays PC. The number of overlapping resonances contained
within a given peak cannot be ascertained via the FFT. Instead, post-processing via
fitting is used to merely guess how many components underlie a given peak. Obvi-
ously, there is a great likelihood that false information will be generated by overfitting
and/or that true metabolites are missed due to underfitting. Clearly, then, fitting proce-
dures cannot provide reliable quantitative information even about any predetermined
resonances, since these are most likely biased, and at best, only by serendipity yield a
correct guess [72]. Simply stated, the inability to autonomously reconstruct the spec-
tral parameters, i.e. the fundamental complex frequencies and amplitudes, completely
eliminates the FFT from the list of signal processors that can on their own solve the
quantification problem, which is otherwise the “raison d’être” of MRS.

1.4 The fast Padé transform: an advanced and more appropriate signal processor
for MRS and MRSI

As a more advanced signal processing method, the fast Padé transform (FPT) has
capabilities that are excellently suited to NMR spectroscopy in biochemistry as well as
to MRS and MRSI in medicine [72–75]. In the present context, the FPT is particularly
poised to solve the above-described challenges in breast cancer diagnostics using
MRS and MRSI. The FPT is a high-resolution, non-linear signal processor which has
parametric as well as non-parametric forms.

The actual number of metabolites contained in a given encoded MRS time signal
is treated as a parameter by the FPT, and is precisely ascertained. The complex-
valued fundamental frequencies and amplitudes of the characteristic oscillations of
each resonance are the spectral parameters that are uniquely determined. Thereby,
the key clinical information, the metabolite concentrations are reliably computed.
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These features of the FPT apply even to the most closely-overlapping resonances, with
quantification achieved to machine accuracy for theoretically synthesized noiseless
time signals [72,74–76].

The FPT generates a spectrum by the quotient of two polynomials (P/Q). The
fast Padé transform has two equivalent variants denoted by FPT(+) and FPT(−) as
defined inside and outside the unit circle for the causal and anti-causal representation,
respectively [72–75]. Both the FPT(+) and the FPT(−) are used for cross validation,
such that only those converged results of reconstructions obtained by both the FPT(+)

and the FPT(−) are retained. Thus, convergence must be attained via two algorithms
that encompass two complementary regions of the complex frequency plane, outside
and inside the circle of radius equal to 1. This is a self-contained checking procedure
such that there is no need to compare it with any other signal processor to validate the
results of the FPT.

The FPT has been effectively applied to many in vivo encoded MRS time signals
[72,73,77–79]. Nevertheless, for benchmarking within cancer diagnostics, it is deemed
necessary to apply the FPT to simulated or synthesized MRS time signals that closely
correspond to the encoded data. This strategy is vital to validation because it is akin to
the controlled approach used in other disciplines such as engineering, and has thereby
passed “the test of time” [72,73].

1.4.1 How signal–noise separation is achieved by the fast Padé transform

Spurious resonances are abundant in most MRS quantification problems solved by
the FPT, since such problems invariably generate an over-determined system of linear
equations. The FPT algorithmically separates the genuine and spurious resonances by
identifying pole-zero confluences. This is a phenomenon unique to the FPT. When the
FPT generates a spectrum by the quotient of two polynomials (P/Q), the intrinsic
characteristics of the system are parametrized. This is achieved through the unique
set of spectral poles and zeros. The denominator polynomial Q is associated with the
system poles and represents the positions (chemical shifts) and widths of peaks in a
spectrum. The numerator polynomial P corresponds to valleys in between any two
adjacent peaks in the same spectrum, and the system zeros are described thereby. The
poles and zeros that are coincident are called Froissart doublets [80]. These doublets
are unstable; they roam chaotically in the complex frequency plane thus exhibiting
instability with even the slightest perturbation, and do not ever converge. This stochas-
tic behavior is typical of noise. Thus, in many ways spurious resonances are similar to
noise and, as a spurious content, need to be identified and binned to be cast out from
the final results of the analysis.

Before the analysis, the total number K of genuine resonances is not known. Using
the “FFT + fitting” approaches only a guess can be made about K . By contrast, the
FPT exactly reconstructs this number K , just as it reconstructs the other spectral para-
meters: the fundamental frequencies and amplitudes. When the genuine resonances
fully converge, the sought number K is determined.

As a single polynomial, the FFT brings over all the noise from the time domain into
the frequency domain. There is consequently no way for the FFT to cancel or suppress
this noise. In contradistinction, since the FPT is comprised of two polynomials P and

123



2688 J Math Chem (2014) 52:2680–2713

Q, these two degrees of freedom provide richer mathematics. The quotient P/Q in the
FPT is unique and facilitates noise suppression, by the following logic. In the recon-
structed spectrum PK ′/QK ′ , the total number of resonances K ′ is larger than its gen-
uine counterpart K in the unknown ratio PK /QK . The overestimation �K = K ′ − K
is equally distributed between PK ′ and QK ′ . Consequently, PK ′ and QK ′ will have an
equal number of the same spurious resonances in PK ′/QK ′ . This excess, spurious con-
tent cancels out in PK ′/QK ′ . After this cancellation, only the true information PK /QK

remains in the reconstructed data. The number K of physical, genuine resonances
is thereby exactly determined, even without quantification, as it is only necessary to
extract PK /QK from the time signal. The common degree of polynomials PK ′ and QK ′
is gradually increased until convergence has been reached in their quotient PK ′/QK ′
to the limit ratio PK /QK . This convergence criterion removes the false information
and keeps that which is genuine. A kindred occurrence is seen in experiments when
measurement errors for two quantities A and B tend largely to cancel in their ratio A/B.

Another way to conceptualize pole-zero coincidence is as the cancellation between
a resonance (a peak) and an anti-resonance (a dip), or between a full width at half-
maximum (FWHMax) and full width at half-minimum (FHWMin). Thus, spurious
resonances have: FWHMax = FHWMin, whereas the poles and zeros of genuine
resonances are not equal to each other and FWHMax �= FHWMin.

Overall, pole-zero cancellation is carried out by gradually increasing the degree of
the Padé polynomials. Thereby, the reconstructed spectra fluctuate until stabilization
occurs. This pole-zero cancellation is best seen from the cannonical representation of
e.g. the diagonal FPT(−):

P−
K (z−1)

Q−
K (z−1)

= p−
K

q−
K

∏K
k=1(z

−1 − z−1
k,P )

∏K
k=1(z

−1 − z−1
k,Q)

, (1)

where p−
K and q−

K are the expansion coefficients of the largest power z−K in P−
K (z−1)

and Q−
K (z−1), respectively. Further, quantities z−1

k,P and z−1
k,Q are the solutions of

the characteristic equations P−
K (z−1) = 0 and Q−

K (z−1) = 0, respectively, with
1≤ k ≤ K .

Using the quotient form of Eq. (1), the terms in the Padé numerator and denominator
polynomials cancel out when the computation is continued after the stabilized value
of degree K in the FPT(−) has been attained. Hence, this is a signature of stability of
the spectra:

P−
K+m(z−1)

Q−
K+m(z−1)

= P−
K (z−1)

Q−
K (z−1)

(m = 1, 2, 3, . . .). (2)

The Cauchy residue of P−
K /Q−

K from Eq. (1) represents the amplitudes d−
k . The latter

have two equivalent analytical expressions:

d−
k = p−

K

q−
K

∏K
k′=1(z

−1
k,Q − z−1

k′,P )
∏K

k′=1,k′ �=k(z
−1
k,Q − z−1

k′,Q)
or d−

k =
{

P−
K (z−1)

(d/dz−1)Q−
K (z−1)

}

z−1=z−1
k,Q

. (3)
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It is seen from Eq. (3) that whenever z−1
k,P = z−1

k,Q , the amplitude d−
k of the poles from

the Froissart doublets is exactly zero:

d−
k = 0 for z−1

k,P = z−1
k,Q . (4)

As noted, the algorithmic pole-zero coincidences can be viewed as cancellation
between the FWHMax and FWHMin (FWHMax = FWHMin) or, equivalently,
between the corresponding resonance and anti-resonance. For genuine resonances,
recall that FWHMax �= FWHMin. Spurious resonances have zero amplitude, whereas
the amplitudes of genuine resonances are non-zero.

A resonance stability test is also used to assess whether a given resonance is
genuine versus spurious. By varying the partial signal length (i.e. by truncating the
total signal length and preserving the same bandwidth), and/or the level of added
noise, the stability of the spectral parameters of true resonances is contrasted to the
instability of those that are spurious. In other words, the genuine resonances remain
stable while the spurious structures roam around and do not converge. Thereby, sta-
ble and unstable resonances are categorized as physical (genuine) versus unphysical
(spurious), respectively.

Instability is exhibited in alterations of spectral parameters with changes in K ′ and
also with various levels of noise. The alterations occur in both P−

K ′ and Q−
K ′ . Although

these unstable resonances behave stochastically, they still show a strong correlation
of their random fluctuations, such that in the poles z−1

k,Q and zeros z−1
k,P , the equality

z−1
k,Q = z−1

k,P is maintained to a high degree of accuracy. In other words, these unstable
resonances form couples which can be viewed as a type of deterministic behavior
(a kind of order within the chaos). Thus, the fluctuating pole is accompanied by a
fluctuating zero, such that they collapse into each other (z−1

k,Q = z−1
k,P ). Pole-zero

coincidence consequently leads to annihilation of unstable spectral structures. This
pole-zero cancellation can be viewed as subtraction of two identical contributions
of opposite signs in a superposition of a resonance (peak) and anti-resonance (dip)
both built from unstable, and, thus, spurious harmonics z−1

k,Q and z−1
k,P stemming from

Q−
K ′

(
z−1

)
and P−

K ′
(
z−1

)
, respectively. Such a correlated behavior of z−1

k,Q and z−1
k,P is

due to the fact that polynomials Q−
K ′

(
z−1

)
and P−

K ′
(
z−1

)
are themselves correlated

because P−
K ′ is generated from Q−

K ′ . Noise suppression or elimination within the FPT
is accomplished by way of detection of pole-zero congruences, and is also called the
denoising Froissart filter (DFF).

On the other hand, even if some physical structures may also have near pole-
zero confluences or near zero amplitude, by their stability, such genuine resonances
can always be distinguished from Froissart doublets. This binning within the output
list of reconstructions can also be carried out via automatic classification using the
conditional probability to statistically validate the estimated parameters, as done in
the fast Padé transform within the PhD thesis of Ojo in 2010 [81]. More recently,
the FPT in conjunction with SNS, or equivalently, DFF, has been used in the
PhD thesis by Zhang [82]. Thus, the fast Padé transform accompanied by signal–
noise separation or the denoising Froissart filter promisingly appears as a multi-
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pronged strategy for distinguishing false from true content of the investigated time
signals.

1.5 Applications of the FPT to noiseless MRS time signals from breast cancer,
fibroadenoma and normal breast

Within the framework of breast cancer diagnostics, the first step was to apply the FPT
to the relevant noise-free MRS time signals. We generated three such MRS time signals
that were similar to in vitro MRS data as encoded from extracted breast specimens from
normal, non-infiltrated breast, from fibroadenoma and from breast cancer [67]. In each
of these three cases, there were nine resonances, which the FPT resolved and precisely
quantified. Among these were the resonances in the spectrally dense region between
3.21 and 3.23 ppm where phosphocholine, PC, and phosphoethanolamine, PE, were
almost completely overlapping. The input parameters for these two resonances were
precisely reconstructed by the FPT at convergence [10,72,83].

Alongside these extremely closely overlapping resonances in the breast spectra, a
large number of spurious resonances was also generated. Altogether, at convergence,
there were 750 resonances retrieved, i.e. 741 that were spurious, in addition to the nine
physical peaks. The FPT clearly demarcated these two categories in all cases, despite
the fact that fewer than 2 % of the resonances were genuine.

1.6 Other applications of the fast Padé transform to MRS signals for cancer
diagnostics

1.6.1 The FPT applied to noiseless MRS time signals from ovarian cancer

Although ovarian cancer has an excellent prognosis if detected early, this malignancy
is usually detected in the late stages with very poor survival. Appropriate screening
methods are vitally important but still lacking. In vivo MRS has been earmarked as the
potential method of choice for ovarian cancer diagnosis, but thus far via conventional
Fourier-based processing in vivo spectra are of poor quality, due to low resolution in
this small, moving organ [84,85].

We first applied the FPT to noiseless time signals associated with MRS data for
benign and cancerous ovarian cyst fluid from Ref. [86]. The spectral parameters for
all twelve genuine metabolites, including those that were quite closely-lying, were
accurately reconstructed by the FPT using very small fractions (N/16 = 64) of the
time signal of full length N = 1024 [72,87,88], whereas the FFT produced completely
uninterpretable spectra at these short signal lengths [72,87,88]. From these earlier
studies [72,87,88], it was seen that the FPT dramatically improved SNR and resolution.
Besides the twelve genuine metabolites reconstructed at convergence, some twenty
spurious resonances were also produced. The latter were identified as such due to
pole-zero confluence yielding Froissart doublets with zero amplitude and thereby cast
out.
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1.6.2 Applications of the FPT to noiseless time signals from prostate cancer

Worldwide, prostate cancer is among the most prevalent malignancies among men,
with over 200000 deaths per year attributed to this disease. Screening and early detec-
tion of prostate cancer are still quite controversial, since the existing methods lack suf-
ficient diagnostic accuracy [89,90]. These dilemmas could potentially be surmounted
by MRS and MRSI, which have shown promise in a number of aspects of prostate
cancer diagnosis and management [91–93]. Still, MR-based modalities are not yet
considered to be appropriate for screening [94].

Prostate spectra contain several multiplet resonances that have been very difficult
to assess and quantify. We have applied the FPT to noiseless in vitro data associ-
ated with encoding from normal glandular and stromal prostate, as well as from can-
cerous prostate [95]. The FPT resolved and accurately quantified all twenty-seven
genuine resonances, including multiplets, as well as overlapping peaks of different
metabolites. The metabolite concentrations which distinguish healthy from malig-
nant prostate were thereby precisely computed [72,96,97]. A large number, approxi-
mately 300, spurious resonances were also generated at convergence. These Froissart
doublets with zero amplitude were separated with confidence from the 27 genuine
resonances.

1.6.3 The FPT applied to noise-corrupted MRS time signals from ovarian cancer

We proceeded to apply the FPT to MRS time signals associated with ovarian
cancer in the presence of added noise [34,98,99]. With the addition of extrane-
ous noise (σ = 0.01156 RMS, where RMS is the root-mean-square of the noise-
free time signal, RMS = (N−1 ∑N−1

n=0 |cn|2)1/2, convergence was achieved at
N/8 = 128(N = 1024), with accurate reconstruction of the spectral parameters for
all twelve genuine metabolites. Some 52 spurious resonances were also generated at
convergence; these were recognized as Froissart doublets with pole-zero confluences
and the associated zero-valued amplitude [98].

When higher levels of noise were added (σ = 0.1156 RMS, σ = 0.1296 RMS and
σ = 0.2890 RMS ), the Froissart doublet coincidence was not always exact. Moreover,
some of the spurious resonances showed near zero amplitudes rather than actual zero
amplitudes [34,99]. Since genuine metabolites might conceivably be present at very
low concentrations, their peak amplitudes could be extremely small. How then would
one be completely certain which of the resonances are spurious and which are genuine?
This question becomes pivotal for proceeding with confidence from controlled input
data to encoded time signals for which the number of resonances and their parameters
are not known prior to spectral analysis.

The stability test was vital in this case. By varying the partial signal length and also
by adding yet more noise, all the true metabolites, including those with very small
amplitudes could be confidently identified by their stability. Spurious resonances were
unstable with even a minimal change in partial signal length or noise level, and were
binned for discarding, whereas all the stable and thus true metabolic information was
kept in a denoised spectrum [34,99].
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1.7 Performance of the FPT for noise-corrupted MRS time signals from breast
fibroadenoma: the present study

Based upon the results described above, it is justifiable to apply the FPT to noise-
corrupted time signals from the breast. Here, we choose a frequently occurring non-
malignant pathology, namely fibroadenoma of the breast, which can, at times, be dif-
ficult to distinguish from breast cancer. We are particularly interested in how the FPT
resolves the extremely closely-overlapping resonances between 3.21 and 3.23 ppm,
where, as noted, due to overexpression of the enzyme choline kinase, elevated concen-
tration of phosphocholine has been identified as a marker of malignant transformation
[68–71]. In the present study, we examine the performance of the FPT in handling
noise-corrupted MRS time signals in this controlled setting, as a key step aimed towards
widespread clinical application of Padé-optimized MRS for breast cancer diagnostics.

2 Methods

2.1 The known MRS time signal: input data as encoded from fibroadenoma
of the breast

The time signal of the typical quantum-mechanical form was generated according to:

cn =
K∑

k=1

dkeinωkτ , Im (ωk) > 0, (0 ≤ n ≤ N − 1). (5)

The total signal length is represented by N . These input data are based upon encoded
time signals from fibroadenoma of the breast, as per Ref. [67]. Each cn is a sum of
K = 9 damped complex exponentials exp (inτωk) (1 ≤ k ≤ 9) with complex ampli-
tudes dk . Herein, ωk and dk are the fundamental angular frequencies and amplitudes.
Moreover, ωk = 2π νk , where νk is the linear frequency. The real and imaginary parts
of a complex number z are represented by Re(z) and Im(z), respectively. The time
signals of the form (5) were quantified via the FPT(−), as described in Refs. [72–75].

Since ωk is complex-valued, such that for Im(ωk) > 0, as in (5), quantity cn

decreases exponentially over time nτ(n = 0, 1, 2, . . ., N − 1). Thus, exp(inωkτ) =
exp(−nτ λk + inτ μk), where λk = Im(ωk) and μk = Re(ωk). Consequently, the rhs
of Eq. (5) is a linear combination of K exponentially attenuated frequency-dependent
cosinusoids and sinusoids each of which is premultiplied by the constant, real intensity
|dk | :

dkeinωkτ =
(
|dk | eiϕk

)
einωkτ =|dk |

{
e−nλkτ [cos (nμkτ + ϕk) + isin (nμkτ + ϕk)]

}
,

(6)

where ϕk is the phase of the complex amplitude dk .
Herein, for conciseness, we present explicitly only the reconstructions of the

FPT(−). It is verified that the converged findings are identical to those obtained from
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the FPT(+) [72–75]. The diagonal (M = K ) and paradiagonal (M = K −1) complex-
valued spectra in the FPT(−) are:

G−
M,K

(
z−1) = P−

M

(
z−1

)

Q−
K

(
z−1

) , P−
M

(
z−1) =

M∑

r=0

pr z−r , Q−
K

(
z−1) =

K∑

s=0

qs z−s .

(7)

Therein, z−1 is the harmonic variable z−1 = e−iωτ and
{

p−
r , q−

s

}
are the expansion

coefficients. The unique Padé spectrum G−
M,K

(
z−1

)
from Eq. (7) exists for the given

(input) exact finite-rank Green’s function G−(z−1) via:

G
(
z−1) = G−

M,K

(
z−1) + O(z−M−K−1); G

(
z−1) =

N−1∑

n=0

cnz−n . (8)

Here, the symbol O(z−M−K−1) signifies the error which is a series in powers z−m(M+
K + 1 ≤ m ≤ ∞). Thus, the approximation G

(
z−1

) ≈ G−
M,K

(
z−1

)
in the general

FPT(−) includes exactly M + K signal points {cn} from the input data G
(
z−1

) =
∑N−1

n=0 cnz−n with M + K ≤ N − 1.
In Ref. [67], the MRS time signals of length N = 65536 were recorded at a Larmor

frequency (νL) of 600 MHz and with a static magnetic field strength B0 ≈ 14.1T.
A bandwidth (BW) of 6 MHz was used, where the inverse of this bandwidth is
the sampling time τ . We used a total signal length of N = 2048. The nine reso-
nances were grouped into two frequency bands. The first was from 1.3 to 1.5 ppm
and the second from 3.2 ppm to 3.3 ppm. Within the second band were seven res-
onances, including two which very closely overlapped at approximately 3.22 ppm:
phosphocholine, PC resonance #4 and phosphoethanolamine, PE resonance #5 sep-
arated by 0.001 ppm. The amplitudes dk were computed based upon the reported
concentrations of metabolites Cmet for a patient with fibroadenoma. Therefore, |dk | =
2Cmet/Cref , where Cref = 0.05mM/g. The internal reference used in Ref. [67] was TSP
(3-(trimethylsilyl-) 3,3,2,2-tetradeutero-propionic acid), a molecule which is not actu-
ally present in the tissue. Therefore, |dk | = Cmet/(25μM/g) of ww of the tissue. In
Ref. [67] the T ∗

2 relaxation times were not reported. We consequently set the line
widths (full-widths at half-maximum, FWHMax) to be from 0.0008 to 0.0009 ppm.

The peaks are assumed to be Lorentzian, consistent with the time signal as per
Eq. (5). In the absorption mode we used mainly the diagonal and/or paradiagonal
Re(P±

K /Q±
K )(diagonal) or Re(P±

K−1/Q±
K ) (paradiagonal) forms, since these two vari-

ants for l = 0 and l = 1 are empirically observed to be more stable compared to those
with other values of l (l = 2, 3, . . .) in P±

K−l/Q±
K .

The line widths are proportional to Im (νk). The smallest chemical shift difference
of 0.001 ppm is only 1.11 to 1.25 times larger than the line widths of 8 × 10−4 to
9 × 10−4 ppm. The phases ϕk(1 ≤ k ≤ 9) from complex-valued dk were all set to
zero. Thus, all the dk’s are real, dk = |dk |. The input data are displayed in Table 1.

We employed the parametric version of the diagonal FPT(−) to analyze the MRS
time signal data from breast fibroadenoma. The coefficients {p−

r , q−
s } of the polyno-
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Table 1 Input spectral parameters, metabolite concentrations and assignments for breast fibroadenoma

nk or # Re(νk ) (ppm) Im(νk ) (ppm) |dk | (au) Ck (μM/g) Mk

1 1.332 0.0008 0.059 1.475 LAC

2 1.471 0.0008 0.004 0.100 ALA

3 3.212 0.0008 0.002 0.050 CHO

4 3.220 0.0008 0.003 0.075 PC

5 3.221 0.0009 0.019 0.475 PE

6 3.232 0.0008 0.003 0.075 GPC

7 3.251 0.0008 0.039 0.975 β-GLC

8 3.273 0.0008 0.014 0.350 TAU

9 3.281 0.0008 0.019 0.475 M-INS

These parameters and concentrations correspond to the in vitro data from time signals encoded in Ref. [67].
The number of the kth resonance is nk (or #), whereas Re(νk ) and Im(νk ) are the real and imaginary parts
of the fundamental complex-valued linear frequency νk referring to the chemical shifts and linewidths,
respectively. The phases ϕk (1 ≤ k ≤ 9) from the complex-valued amplitudes dk were all set to zero,
such that every dk is real, dk = |dk | (1 ≤ k ≤ 9). The metabolite concentrations are denoted by Ck
and the metabolite assignment is Mk (LAC lactate, ALA alanine, CHO choline, PC phosphocholine, PE
phosphoethanolamine, GPC glycerophosphocholine, β-GLC β-glucose, TAU taurine, M-INS myoinositol).
In all Tables and figures, chemical shifts are in parts per million or ppm, concentrations are in μ M/g, peak
widths in ppm and peak heights are in arbitrary units, au

mials P−
K

(
z−1

)
and Q−

K

(
z−1

)
from Eq. (7) were computed from the defining equation

of the diagonal FPT(−) via G
(
z−1

) ≈ P−
K

(
z−1

)
/Q−

K

(
z−1

)
.

When the coefficients of the same powers of z−1 are equated, two systems of linear
equations are generated: one for {q−

s } and the other for {p−
r }:

K∑

j=0

cs− j q−
j = 0 (0 ≤ s ≤ K , q−

0 = 1), p−
r =

r∑

j=0

cr− j q
−
j (0 ≤ r ≤ K ). (9)

After the set {q−
s } is extracted from the input data {cn} (0 ≤ n ≤ N − 1),

the other set {p−
r } becomes immediately available via the analytical expression

p−
r = ∑r

j=0 cr− j q
−
j (0 ≤ r ≤ K ) from (9). Thus, in fact, the set {p−

r , q−
s } is

obtained by solving only one system of linear equations (that for {q−
s }). Earlier,

when discussing pole-zero coincidences, it was stated that this comes from corre-
lation between the numerator (PK ′) and the denominator (QK ′) polynomials in the
Padé quotient PK ′/QK ′ . This correlation is evidenced by Eq. (9) where the expansion
coefficients {p−

r } of PK ′ are derived from the expansion coefficients {q−
s } of QK ′ .

To extract the peak parameters, the characteristic equation Q−
K (z−1) = 0 is solved,

leading to K unique roots z−1
k,Q = e−iτω−

k,Q (1 ≤ k ≤ K ). Thus, the sought eigen-

frequency ω−
k,Q is deduced via ω−

k,Q = (i/τ) ln(z−1
k,Q). As before, z−1

k,P and z−1
k,Q

denote the zeros of P−
K (z−1) and Q−

K (z−1), respectively. The zeros z−1
k,Q are required

for quantification. In addition, for signal–noise separation via Froissart doublets the
zeros z−1

k,P are also needed.
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Via the FPT(−), the parameters {ω−
k,Q, d−

k } (1 ≤ k ≤ K ) of each physical resonance

are obtained directly from the examined MRS time signal. The kth metabolite concen-
tration is computed from the reconstructed amplitudes |d−

k | as C−
met = (25μM/g)|d−

k |
of ww of the scanned tissue.

2.2 Noise corruption of the input data

Reconstructions were performed using the input data that were corrupted by noise. The
latter were created by adding complex-valued random zero-mean Gauss-distributed
white noise of certain levels to the noiseless MRS time signal. The selected noise
levels were σ = 0.00289 RMS and σ = 0.0289 RMS , with RMS being the root-
mean-square of the noise-free time signal, as noted. We use RMS as a quantifier of
noise because this parameter reduces both the bias relative to the actual (sought) value
as well as the variance of noise. The RMS is a measure of the signal dynamics, and
converts signal oscillations to variations of the power of the signal across the given
bandwidth [34].

There are many sources of noise that can arise in association with encoding MRS
time signals. Among these are thermal Brownian random motion of water and other
molecules related to the electronic circuitry, as well as respiratory motion, eventually
peristalsis etc., depending upon the part of the patient’s body for which the encoding
is carried out. Moreover, when encoding is performed on clinical (1.5 T) scanners, the
SNR is lower compared to higher field scanners. Notably, Brownian motion entails
enormous molecular scattering. Therefore, this corresponds to the theorem of large
numbers, leading to a Gaussian distribution. Consequently, random noise can be imi-
tated by Gaussian distributed white noise. Since random noise in the encoded MRS
time signals is distributed across all the frequencies in a given bandwidth, it is, de facto,
white Gaussian noise. Therefore, the time signals corrupted with Gaussian white noise
are “a mathematical phantom” for the corresponding MRS free induction decay curves.

2.3 Non-parametric signal processing via the FPT and the FFT

The Padé and Fourier spectra can only be compared with regard to total shape spectra
since, as a non-parametric estimator, that is all the FFT can compute. The Fourier
spectrum is given by:

Fk = 1

N

N−1∑

n=0

cn exp(−2iπkn/N ); 1 ≤ k ≤ N − 1, (10)

where 2πk/T are fixed Fourier grid frequencies that are unrelated to ωk from cn .
Here, T is the total duration or acquisition time of the signal, T = Nτ . The variable
exp(−2iπkn/N ) in (10) is an undamped harmonic.

The non-parametric data are provided by the FPT as soon as the Padé polynomials
P−

K and Q−
K are extracted from the time signal {cn}. The ratio P−

K /Q−
K is the complex-

valued total shape spectrum, or envelope, whose real part is the absorption spectrum,
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whereas its imaginary part is the dispersion spectrum. Note that the non-parametric
FPT directly generates the total shape spectrum P−

K /Q−
K at any given set of sweep

frequencies, and these need not correspond to the preassigned Fourier grid [72,73,77].
In other words, the FPT can interpolate, according to the actual features of the analyzed
time signal.

2.4 Quantification of MRS time signals from breast fibroadenoma by the FPT:
parametric signal processing

The FPT quantifies MRS data via polynomial rooting. This is a single numerical
procedure whereby the roots of the characteristic equations of the numerator (PK )

and the denominator (QK ) polynomials generate the zeros and poles of the Padé
spectrum P−

K /Q−
K . Since the rational function P−

K /Q−
K is a meromorphic function,

the zeros of Q−
K are the poles of P−

K /Q−
K . Recall that meromorphic functions are

functions whose only singularities are poles. Roots z−1
k,Q of equation Q−

K

(
z−1

) = 0

reconstruct the fundamental or eigen-frequencies ω−
k,Q . The amplitude d−

k is given via

the analytical expression for the Cauchy residue of P−
K (z−1)/Q−

K (z−1) taken at the
kth pole z−1 = z−1

k,Q as per Eq. (3).
Consequently, since the quantification problem entails finding the eigen-set

{ω−
k,Q, d−

k } (1 ≤ k ≤ K ), it might be presumed that this is the concluding part of
spectral analysis. This is not the case, however, since this segment of the analysis does
not, in fact, generate the eigenset {ω−

k,Q, d−
k } (1 ≤ k ≤ K ) with K being the true num-

ber of resonances. Instead, since, as mentioned, an over-determined system of linear
equations is set up, a larger collection is produced {ω−

k,Q, d−
k } (1 ≤ k ≤ K ′), with K ′

as the sum of K genuine resonances and K ′′ spurious resonances (K ′ = K + K ′′). In
other words, we obtain P−

K ′/Q−
K ′ instead of P−

K /Q−
K .

In order to omit the K ′′ false (noisy or noise-like) resonances that are not the con-
stituents of the K input eigen-frequencies and the K associated eigen-amplitudes, it
is necessary to root the numerator polynomial via P−

K ′
(
z−1

) = 0, giving the zeros
{

z−1
k,P

}
(1 ≤ k ≤ K ′) of the spectrum P−

K ′
(
z−1

)
/Q−

K ′
(
z−1

)
. Via the stability assess-

ment within signal–noise separation, or SNS, binning is carried out according to stable
versus unstable resonances as a function of the varying degree K ′ of polynomials P−

K ′
and Q−

K ′ . Note that the expansion coefficients {p−
r } of P−

K ′ are given analytically as a
linear combination of the expansion coefficients {q−

s } of Q−
K ′ as per (9).

3 Results

The constancy of the spectral parameters was checked by systematically increasing the
signal length for the same bandwidth (i.e. three acquisition times). The reconstructed
spectral parameters are shown in Table 2 at total orders K = 350, 850 and 1024. For
the total signal length N = 2048, the partial signal length NP is given by NP = 2K .

In the top panel (i) of Table 2, at K = 350, i.e. at NP = 700, only eight of
the nine genuine resonances were reconstructed. In the chemical shift interval from
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Table 2 Reconstructed spectral parameters and metabolite concentrations by using the fast Padé transform,
or FPT(−), for fibroadenomatous breast

nk or # Re(ν−
k ) (ppm) Im(ν−

k ) (ppm) |d−
k | (au) C−

k (μM/g) M−
k

(i) Padé-reconstructed data: NP = 700, N = 2048 (PC, PE: unresolved)

1 1.332 0.0008 0.059 1.475 LAC

2 1.471 0.0008 0.004 0.100 ALA

3 3.212 0.0008 0.002 0.050 CHO

5 3.221 0.0009 0.022 0.550 PE

6 3.232 0.0008 0.003 0.075 GPC

7 3.251 0.0008 0.039 0.975 β-GLC

8 3.273 0.0008 0.014 0.350 TAU

9 3.281 0.0008 0.019 0.475 M-INS

(ii) Padé-reconstructed data: NP = 1700, N = 2048 (Fully converged)

1 1.332 0.0008 0.059 1.475 LAC

2 1.471 0.0008 0.004 0.100 ALA

3 3.212 0.0008 0.002 0.050 CHO

4 3.220 0.0008 0.003 0.075 PC

5 3.221 0.0009 0.019 0.475 PE

6 3.232 0.0008 0.003 0.075 GPC

7 3.251 0.0008 0.039 0.975 β-GLC

8 3.273 0.0008 0.014 0.350 TAU

9 3.281 0.0008 0.019 0.475 M-INS

(iii) Padé-reconstructed data: NP = 2048 = N (Fully converged)

1 1.332 0.0008 0.059 1.475 LAC

2 1.471 0.0008 0.004 0.100 ALA

3 3.212 0.0008 0.002 0.050 CHO

4 3.220 0.0008 0.003 0.075 PC

5 3.221 0.0009 0.019 0.475 PE

6 3.232 0.0008 0.003 0.075 GPC

7 3.251 0.0008 0.039 0.975 β-GLC

8 3.273 0.0008 0.014 0.350 TAU

9 3.281 0.0008 0.019 0.475 M-INS

The input spectral parameters are taken from Table 1 to create the noise-free time signal. These data were then
corrupted by adding zero-mean random complex-valued Gaussian noise of a level equal to 0.0289 multiplied
by the root mean square or RMS of the noise-free time signal. At partial signal lengths NP = 700 and 1700
and at full signal length N = 2048 the computations were carried out as shown on panels (i), (ii) and (iii),
respectively. Panels (ii) and (iii) show full convergence

3.220 to 3.221 ppm there should have been two resonances reconstructed. However,
only one resonance was generated, at 3.221 ppm. Phosphocholine, PC, peak #4 was
not seen. Since the peak height of phosphoethanolamine, PE, was overestimated,
the computed PE concentration was 0.075μM/g greater than its actual value. The
spectral parameters and concentrations of the other seven metabolites were correct
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at NP = 700. At NP = 1700 convergence was attained as seen on the middle panel
(ii) of Table 2. At all higher partial signal lengths, as well as at full signal length N
convergence remained stable. The stability of convergence is illustrated in the bottom
panel (iii) of Table 2 at full signal length N = 2048, where all the reconstructed
parameters are identical to those in panel (ii), as well as to the input data presented in
Table 1.

In the FFT, the signal length is given by a composed number 2m(m = 1, 2, . . .) and
specifically for N = 2048, we have N = 211. Since this restriction is unnecessary for
the FPT, we chose arbitrary truncation levels of N as NP = 700 and 1700, neither of
which is of the form 2m necessitated by the FFT. In other words, in the FPT, the partial
signal length NP can be any positive integer less than or equal to N .

At the two partial signal lengths NP = 700 and 1700 and at the full signal length
N = 2048 on the top (i), middle (ii) and bottom (iii) panels of Fig. 1, respectively,
with the noise level of σ = 0.0289 RMS metabolite maps for the Padé-reconstructed
concentrations are presented. There are two independent sets of abscissae and ordi-
nates on these maps, such that for metabolites ## 3 to 9, namely choline (3.212 ppm) to
myoinositol (3.281 ppm), the abscissae and ordinates are on the bottom and left, respec-
tively. For metabolites ## 1 and 2, i.e. lactate (1.332 ppm) and alanine (1.471 ppm)
that are far from the others, the abscissae and ordinates are on the top and right,
respectively.

At NP = 700 [top panel (i) of Fig. 1], the exact input data for PC, phospho-
choline and PE, phosphoethanolamine, and the Padé-reconstructed data are not in
accord. Namely, the metabolite concentration is only generated for a single resonance
at 3.221 ppm. This concentration is equal to the sum of the actual concentrations
of PC + PE. For the other seven metabolites, the computed concentrations are cor-
rect at NP = 700. This is shown numerically and by the confluence of the symbols
× and the open circles (o). The Padé-reconstructed chemical shifts and concentra-
tions exactly coincide with the input data for all nine metabolites at NP = 1700, as
shown on the middle panel (ii) of Fig. 1. For the total signal length N = 2048, as
depicted on the bottom panel (iii) of Fig. 1, the metabolite concentration map com-
pletely matches that of panel (ii). The stable convergence within the FPT is further seen
thereby.

The Padé-reconstructed absorption component shape spectra and the total shape
spectra for the interval between 3.2 and 3.3 ppm are presented in Fig. 2 at the partial
signal lengths NP = 700 and NP = 1700 as well as for the total signal length N = 2048
for breast fibroadenoma data with the noise level of σ = 0.0289 RMS . At NP = 700,
the absorption total shape spectrum is nearly converged, as shown on the top right panel
(iv). However, the structure of the almost converged peak “4+5” on the total shape
spectrum does not in any way indicate that two peaks should be found therein. On the
component shape spectrum [upper left panel (i)], however, the lack of convergence
is clear since only one peak (#5, PE) appears at 3.221 ppm and peak #4, PC is not
resolved. On the left middle panel (ii) of Fig. 2 at NP = 1700, the component shape
spectrum is converged: peaks ## 4 and 5 are resolved, with their correct heights, as
is the case for all the other resonances. Phosphocholine completely underlies PE,
therein. Still however the total shape spectrum gives no indication of this, since the
fully converged peak 4 + 5 has a perfect Lorentzian shape [panel (v)]. For both the
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Fig. 1 Concentration map of metabolites at two partial signal lengths NP = 700 and 1700 as well as at
full signal length N = 2048 on (i), (ii) and (iii), respectively, as reconstructed via the fast Padé transform
FPT(−) for the noisy time signal cn + wn , based on Ref. [67]. Here, {cn}(0 ≤ n ≤ N − 1) is the noiseless
time signal sampled from Eq. (5), using the fundamental frequencies and amplitudes {νk,dk }(0 ≤ k ≤ K )

listed in Table 1 for K = 9. The set {wn}(0 ≤ n ≤ N − 1) is the additive random zero-mean Gaussian
white noise of standard deviation σ , where σ = 0.0289 RMS with RMS being the root-mean-square of the
noiseless time signal {cn}. The ordinates are metabolite concentrations in micromole per gram (μM/g) of
tissue wet weight, or ww, and the abscissae are dimensionless frequencies as chemical shifts in parts per
million, or ppm. Two sets of abscissae and ordinates are shown: top and right ## 1, 2 (Lactate LAC, Alanine
ALA) and bottom and left ## 3-9 (Choline CHO,. . ., Myoinositol M-INS). The full list of metabolites’
acronyms is given in “Abbreviations”
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Fig. 2 Padé-reconstructed absorption spectra within the frequency range of 3.2–3.3 ppm for fibroadeno-
matous breast for the noisy time signal sampled from Eq. (5) with the parameters from Table 1 based on Ref.
[67]. Component shape spectra: left panels (i)–(iii) and total shape spectra: right panels (iv)–(vi). On (iv)
at the partial signal length NP = 700, the total shape spectrum is almost, but not yet fully converged. The
corresponding component spectrum on (i) did not resolve peak # 4 (PC) and overestimated peak # 5 (PE).
The component spectra on (ii) is converged at NP = 1700; as is the total shape spectrum on (v). The two
resonances PC (# 4: 3.220 ppm) and PE (# 5: 3.221 ppm) are correctly detected on (ii), even though PC com-
pletely underlies PE. The difference between the envelopes on (iv) and (v), i.e. the residual is buried in the
background noise. At all longer partial as well as signal lengths, convergence of the absorption component
and total shape spectra remain stable, as illustrated on the bottom panels (iii) and (vi) for N = 2048
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absorption component shape spectrum and the total shape spectrum, convergence
is stable at longer partial signal lengths, as well as for the full signal length. An
illustration of this stable convergence is provided at full signal length N = 2048, in
the bottom panels of Fig. 2. Moreover, the so-called residual spectra [computed as the
difference between any two pairs of envelopes from panels (iv) to (vi)] are buried in
the background noise. This shows that the residual spectra are insufficient for judging
the overall quality of reconstruction. In the “FFT + fitting” approaches, the residual
spectra (model-input data) are overwhelmingly used as one of the main criteria (the
so-called figure of merit) for validating least square estimations.

A succinct, yet comprehensive summary of key clinical MRS data for breast
fibroadenoma is provided in Fig. 3. In panel (i) with the input data, the real part (Re) of
the complex time signal is shown, as per the encoded data from breast fibroadenoma
reported in Ref. [67], with added Gaussian-distributed noise at σ = 0.0289 RMS. To
avoid clutter, the imaginary part (Im) of the FID, which is similar, is not shown herein.
The full signal length is N = 2048. All the output data are shown either for the interval
between 3.2 ppm and 3.3 ppm or [3.16, 3.34] ppm. In panels (ii), (iii), (iv) depicted
are the output data as spectra. Metabolite concentrations are displayed in panel (v).
Signal–noise separation is then illustrated in panels (vi) and (vii) for FWHMax (full
width at half maximum: spectral poles) equals FWHMin (full width at half minimum:
spectral dips) for non-physical data. The distinction between true and spurious peak
heights is shown in panel (viii).

The absorption total shape spectrum as reconstructed via the fast Fourier transform,
FFT, is presented in panel (ii) at full signal length (N = 2048). It is seen therein that
the Fourier-reconstructed envelope or total shape spectrum is completely inaccurate,
revealing only a few rough, stunted broad peaks that are not at all clinically useful.
There is not even a hint of the presence of a choline peak #3 or a glycerophosphocholine
peak #6, by inspection along the irregular sinc-like baseline.

The FFT-reconstructed total shape spectrum is sharply contrasted with that of the
FPT which fully converged at partial signal length NP = 1700 on panel (iii). The
component shape spectra is also fully converged in the FPT at NP = 1700 on panel
(iv). Thus phosphocholine, PC, is seen to completely underlie phosphoethanolamine,
PE. Identification and quantification of this underlying PC peak is totally impossible
with the FFT and post-processing fitting. To match the FPT in (iii) associated with
a time signal sampled at N = 2048 (2 kilobytes). the FFT requires N = 65536,
(64 kilobytes) signal points in a single encoding and consequently there is a 32-fold
lengthening of each transient in the Fourier analysis.

The converged concentration map at NP = 1700 is displayed on the top right panel
(v), wherein the concentrations of all the metabolites, including PC are accurately
computed. Panels (vi) and (vii) identify spurious data via: FWHMax = FWHMin,
symbolized as (confluence of O and •) specifying Froissart doublets. There is
marked instability for two noise levels differing by a factor of 10 on panel (vi)
(σ = 0.00289 RMS) and panel (vii) (σ = 0.0289 RMS). The zero peak heights
in (viii), indicating that the abscissa crosses the centers of the empty circles, represent
the third “signature” of spurious resonances.

Another threefold signature identifies true resonances, namely: FWHMax �=
FWHMin with coincidence of the reconstructed and input poles (O and ×) as indi-
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Fig. 3 A comprehensive summary of MRS for this breast fibroadenoma data. Time signal panel (i) is the
real part of the input data {cn}(0 ≤ n ≤ N − 1) from Eq. (5), based on Table 1 and Ref. [67]. Larmor
frequency (νL ) is 600 MHz, bandwidth (BW) is 6 MHz and its reciprocal is the sampling rate τ . The output
data are shown for the two intervals between 3.2 ppm and 3.3 ppm and within [3.16, 3.34] ppm. Total shape
spectra are on panel (ii) for the fast Fourier transform, or FFT, with no convergence at NP = 2048 and on
(iii) for the fast Padé transform, or FPT with convergence at NP = 1700. (iv) Component shape spectrum
in the FPT(−) converged at NP = 1700. (v) Metabolite concentration map reconstructed by the FPT(−).
The symbols used in (v) through (viii) are as follows: input data (×) and output data (O, •). To facilitate
visualization, the FWHM is doubled at 3.220 ppm for PC and this is indicated by PC* in (vi) and (vii).
Signal–noise separation, or SNS, shown in (vi)–(viii). (vi), (vii) The true metabolites inside the dashed box
are stable at two noise levels differing by a factor of 10, notwithstanding occasional proximity of their poles
and zeros. The non-physical resonances (outside the box) are unstable at the two different noise levels as
well as showing complete pole-zero coincidence. (viii) Physical resonances have non-zero heights, while
those that are non-physical have zero heights
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cated by ⊗ together with robust stability against the two noise levels differing by 10 in
panels (vi) and (vii) as well as non-zero peak heights in panel (viii). Although these true
structures may also display pole-zero near-coincidences as FWHMax ≈ FWHMin,
and their peak heights may be close to zero, genuine resonances remain completely
unchanged for different noise levels, as seen in the panels (vi) and (vii), within the
dash-lined box. Notably, noise does not enter this latter box in which most of the
densely spaced genuine poles (o) and zeros reside. Conversely, one genuine zero asso-
ciated with PE is not seen in panels (vi) and (vii), since it lies outside the windowed
FWHM. Its large FWHMin produces a long pole-zero distance which secures stability
of PE, in face of the small difference of 0.001 ppm between the chemical shifts of PE
and its very close neighbor PC.

Overall, via the Padé-reconstructed parameters in MRS reconstructed by the FPT,
namely the peak heights in panel (viii) multiplied by FWHMax in panel (vi) or (vii),
the metabolite concentrations in panel (v) can be directly deduced. This is the diag-
nostically most vital information. Via the fast Padé transform, SNR can be further
improved and total acquisition time shortened, using barely a quarter of the 128 tran-
sients needed for convergence in FFT [67]. This provides major advantages for MRS
via FPT: improved accuracy via better clinical reliability and higher efficiency through
shorter examination time for the patient.

4 Discussion

4.1 The algorithmic success of the FPT for MRS time signals

The success of the fast Padé transform derives, within theory as well as in practice,
directly from quantum mechanics, which is well-recognized as the most adequate
physics theory. In a manner equivalent to that by which quantum physics prescribes
the particular form (5) of a sum of damped harmonics for the free induction decay
curve in the time domain, the same theory gives, as well, the frequency spectrum by
the unique ratio of two polynomials, as in the fast Padé transform. The arguments
expounded in Refs. [72,73] explain in detail how this comes about. In the present
paper, we see how this algorithmic success directly translates into the potential to
solve a critical public health problem within the domain of timely cancer diagnostics
through magnetic resonance spectroscopy.

4.1.1 The resolution capabilities of the FPT versus the FFT for noise corrupted
MRS time signals

In our previous work applying the FPT to the noiseless MRS data from breast cancer,
fibroadenoma and normal breast [10,72,83], given that our focus was resolution and
quantification of the overlapping components, we chose not to include a comparison
with the FFT. In the present study, however, we decided to directly compare the
performance of conventional Fourier processing with the fast Padé transform for MRS
using breast fibroadenoma data. This decision was based upon the large and rapidly
expanding number of publications on MRS of benign and cancerous breast lesions, all
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based upon total choline assessments using standard Fourier processing. The fact that
these Fourier-based data have yielded only a limited, incremental success particularly
highlights the need for such comparisons. Clearly, such comparisons can only be made
for resolution of the total shape spectrum, which is all that the FFT can provide, as
mentioned.

The reasons for the dramatically improved resolution with the FPT are multi-fold.
With regard to interpolation, it should be first recalled that the Padé grid differs fun-
damentally in the frequency domain from the Fourier grid. The absorption spectra
in the FPT(−) is given by the real parts of the complex-valued polynomial quotients
P−

K (z−1)/Q−
K (z−1), where z−1 = e−iωτ can be taken at any frequency ω i.e. the sweep

frequency. Consequently, the Padé grid is just an arbitrary mesh for plotting the fre-
quency ω and can be selected completely independently of the number of signal points
{cn} used. Thus, the FPT achieves interpolation in spectra, based on the actual analyzed
time signal. In complete contradistinction, the minimal separation ωmin in a spectrum
from the FFT is determined by the total acquisition time T . As noted, the FFT spectrum
is defined only on the Fourier grid points ωk = 2πk/T (k = 0, 1, 2, 3, . . ., N − 1),
where N is the total signal length. Consequently, the FFT cannot interpolate. Instead,
a surrogate procedure is customarily done by the sinc-type interpolation in the fre-
quency domain as a direct result of the zero-filling in the time domain. The net effect
is that undulations become superimposed on the rolling background and, sometimes,
the visual appearance of the spectrum is thereby superficially improved. Since super-
fluous data (zeros) are added in the encoding domain, zero-padding of the time signal
does not, in fact, improve resolution in the Fourier spectrum.

The FPT also has powerful extrapolation capabilities. The polynomial quotient
P−

K /Q−
K is an extrapolator because the inverse of Q−

K is an infinite sum (Maclaurin
series). Moreover, upon convergence, the FPT can extend the input set {cn} (0 ≤
n ≤ N − 1) to any N ′ > N . This extrapolation beyond the N input signal points
is achieved by predicting the non-encoded set {cn} (n = N , N + 1, . . .) using the
extracted prediction coefficients {q−

s } (0 ≤ s ≤ K ) from Eq. (9). It is in this way that
the FPT can provide reliable inference about the unmeasured time signal beyond the
total acquisition time T . In other words, Padé spectra inherently contain inferences
on the otherwise unmeasurable infinitely long time signals by relying solely upon the
corresponding encoded data of finite lengths [72,73,77]. These extrapolation capa-
bilities of the FPT contribute substantially, as well, to resolution enhancement. Due
to its non-linearity, as is apparent from the polynomial quotient for the spectrum,
the FPT can effectively reduce noise, also further improving resolution. As a ratio
of two polynomials, an extra degree of freedom is provided to cancel out noise from
the numerator P−

K and the denominator Q−
K , whereas in the FFT as a single poly-

nomial and being linear, noise is imported intact from the measured time domain
[72,73,77].

The results presented in this paper demonstrate the superior capabilities of the FPT
for these noise corrupted MRS time signals from the breast. The practical clinical
implications of this capability will be discussed in the next subsection.
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4.2 Clinical implications of these findings

4.2.1 Padé-optimized MRS for enhanced breast cancer diagnostics

Superior resolution: shortened examination time for the patient. Based on the supe-
rior resolution performance of the FPT compared to the FFT for MRS time signals
from ovarian cancer [34], we recently discussed in detail, how this would change
the approach to MRS data acquisition, by encoding fewer and relatively short MRS
time signals. The direct practical implications are shortened examination time, thereby
diminishing costs of the MRS procedure, and providing a more comfortable setting
for the patient.

The results presented in this paper suggest that similar advantages would be possible
for Padé-optimized MRS examinations of the breast. In addition, in light of the often
needed volumetric coverage in breast diagnostics, the higher resolution of the FPT for
MRS becomes even more critical for MRSI. This is because spectroscopic imaging
measurements coupled with 3-dimensional spatial resolution need to be performed
within a reasonable total acquisition time in order to be clinically practical.

As reviewed earlier in this paper, attempts have been made to improve resolution
and SNR of MRS spectra from the breast via higher magnetic field scanners [52,55–
59]. Of course, such recorded MRS time signals would thereby contain less noise
compared to 1.5 T clinical scanners. Nevertheless, the sought degree of accuracy in
determining whether or not a breast lesion is cancerous was not accomplished thereby
[56]. Furthermore, the high cost of such examinations would preclude the very goal
of more widespread use of MRS in breast cancer diagnostics.

Beyond “total choline”: possibilities to assess more specific breast cancer markers.
Via Fourier processing for proton MRS, a converged total shape spectrum such as
panel (iii) of Fig. 3 under ideal encoding conditions (high magnetic field strength,
state-of-the-art coil design, meticulous attention to shimming and other technical or
“hardware” aspects), within e.g. the chemical shift region of interest, 3.2–3.3 ppm,
would be the maximum that could be provided. Based upon the total shape spectrum
seen on panel (iii) of Fig. 3, it would be impossible to even know that phosphocholine
lies therein, i.e. that there is a PC peak beneath phosphoethanolamine, let alone to
determine the actual concentration of PC.

Attempts have been made to use in vivo 31P MRS in order to assess the components
of total choline which thereby appear as closely-lying though isolated resonances
[100]. However, since the gyromagnetic ratio for 31P is nearly 2.5 times lower than
that for proton hydrogen and also since phosphorus is far less abundant, a much higher
magnetic field strength is needed (7T). Another disadvantage from a practical point of
view is that that unlike proton MRS which can be performed with the same equipment
as standard MRI, for 31P MRS a second radiofrequency subsystem would be required.

As reported in Refs. [10,72,83], the FPT unequivocally identified and exactly com-
puted the concentration of phosphocholine, as well as the other metabolites in the
spectra of normal breast, fibroadenoma and breast cancer, based on the data of Ref.
[67] without added noise. Herein, the FPT succeeds in this task for noise-corrupted
fibroadenoma data.
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For the noiseless problems as reported in Refs. [10,72,83], convergence was
achieved at a partial signal length NP = 1500, such that 741 spurious resonances
were also generated. In the presence of noise, the partial signal length needed for
convergence was a bit longer (NP = 1700). Consequently, some 841 in total or 100
more spurious resonances appeared than in the noiseless case. All facets of the Padé-
based signal–noise separation, or SNS, namely pole-zero coincidence, zero amplitude
and marked instability with change in noise level helped distinguish these numerous
spurious resonances from the true metabolites. Notably, the amplitude of the true res-
onances, choline, GPC and PC were low, i.e. practically near zero. However, these
resonances remained stable with a tenfold change in noise level [as seen in panels (vi)
and (vii) of Fig. 3], such that these true metabolites could be reliably identified.

Thus, the genuine metabolites, no matter how closely overlapping (and that consti-
tute only ∼1 % of the resonances that appeared in this breast fibroadenoma example)
are definitively identified and precisely quantified via Padé-processing accompanied
by the SNS. Especially in light of the results reported here, alongside our related
and most recent study on breast cancer [101], fitting algorithms that are the current
post-processing sequel to the Fourier-based reconstruction, are seen to be entirely
unsuitable for MRS.

4.2.2 Some broader clinical perspectives: Padé-optimized MRS for personalized
cancer medicine

The potential of Padé-optimized MRS lies in the possibility to monitor metabolism of
a large number (25 or many more) metabolites, some of which may be cancer markers.
Such information can then be correlated with the spatial localization of tumor. This can
be applied not only for initial diagnostics, but also during and after therapy. With regard
to the latter, the evaluated metabolic pathways can be correlated with the dose-response
of tissue on molecular and cellular levels. Not only could early tumor detection be
achieved thereby, but the possibilities for targeted therapies are also expanded. The
obtained results can be used for further developments in drugs that disrupt specific
metabolic pathways essential for tumour cell survival and proliferation. Introduction of
such drugs into the clinic has already shown that patients vary widely in their responses.
Advanced molecular imaging modalities such as MRS as well as positron-emission
tomography (PET) combined with computerized tomography (CT) are likely to play
a key role in predicting and detecting these responses. Innovations of this type can
improve and guide treatment in individual patients in the spirit of truly personalized
cancer medicine (PCM).

Optimized MRS for timely assessment or prediction of response to therapy for breast
cancer. To date, there have been initial promising results using conventional Fourier-
based MRS as well as diffusion weighted MRS to predict or assess breast cancer
response to chemotherapy [102–104]. Most notably, a change in the assessed concen-
tration of total choline at 24 h after the 1st dose of therapy appeared to predict clinical
response to doxorubicin-based chemotherapy among fourteen patients with locally
advanced breast cancer [102]. Recent data also suggest that radiation treatment in
breast cancer might be enhanced via MRS and MRSI. Namely, tumor hypoxia, linked
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to resistance to radiotherapy as well as to chemotherapy, is found to also be associated
with regions of higher non-invasively assessed total choline, tCho, on MRSI in breast
tumor models [105]. The authors of Ref. [105] report that via the FFT-type conven-
tional data processing methods, the components of tCho could not be assessed. They
note, however, that the increase in tCho under hypoxia was primarily due to elevated
phosphocholine levels as shown by in vitro MRS. Taken together, these observations
strongly suggest that we have only begun to “scratch the surface” of the possibilities
for enhancing a more individualized approach to breast cancer treatment via MRS and
MRSI, with Padé-optimization poised to play a pivotal role therein.

Dynamic MRS. The majority of research to date has been within steady-state MRS and
MRSI, where metabolite concentrations are stationary or time-independent. However,
MRS and MRSI can be also applied dynamically, to follow the time evolution of
metabolite concentrations after intravenous injection of hyperpolarized biomarkers
that can catalyze to cancer markers such as choline, lactate, etc. Early identification
of responders versus non-responders to treatment can also be accomplished thereby.
Very soon after administration of the relevant drug, assessment of metabolic uptake
can reveal whether or not the patient is responding to the treatment. This information
could facilitate appropriate subdivision of early responders versus non-responders and
for whom prompt switching of therapy would be indicated.

Not only steady-state but also dynamic MRS could become cost-effective through
mathematical optimization of data analysis via signal processing. In therapy, together
with the expected improvement in patient outcome, dynamic MRS is also expected to
improve cost-effectiveness by early detection (within days or even hours) of respon-
ders versus non-responders to the administered drug1. Besides the most crucial benefit
for the patient, such advantages could translate into dramatic cost reduction. However,
as is the case for steady-state MRS and MRSI, optimization of data analysis is vital.
Thus far, most investigations using dynamic MRS also employ the “FFT + fitting”
approaches. The drawbacks seen for steady-state MRS apply to dynamic MRS, as
well. The situation becomes even worse insofar as phenomenological techniques are
used instead of models with mechanistic kinetics for dose-effect relationships. Here,
the clinical reliability of dynamic MRS can be improved by an appropriate combina-
tion of the FPT with Michaelis-Menten saturation kinetics for enzyme catalysis in a
mechanistic description of chemical reactions leading to products as cancer biomark-
ers [106–109].

5 Conclusions

We conclude that for the potential of magnetic resonance spectroscopy or MRS, and
spectroscopic imaging, or MRSI, to be realized for breast cancer diagnostics, math-
ematical optimization through the fast Padé transform, or FPT will be of critical
importance. Conventional Fourier-based spectral reconstruction with post-processing

1 This should be compared to months, as is often needed for conventional follow-up of disease progression
based on tumor size.
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through fitting has not provided the needed accuracy of MRS and MRSI for distin-
guishing breast cancer from fibroadenoma or other benign lesions of the breast. This
is not unexpected given that the fast Fourier transform is a non-parametric, low reso-
lution processor and that non-unique fitting procedures cannot provide any certainty
whatsoever about closely-overlapping resonances that are of critical importance in
MR spectra from the breast. The high-resolution, quantification-equipped fast Padé
transform, is a paradigm shift of proven validity for optimally accurate processing of
generic time signals comprised of complex damped harmonics as encountered across
interdisciplinary research fields and technologies. These capabilities of the FPT are
clearly demonstrated in the present paper whereby in the presence of realistic noise
levels, the FPT reliably distinguishes spurious resonances from true metabolites and
exactly computes the concentrations of the latter, including phosphocholine, or PC.
Practical implications are underscored in that the high resolution of the FPT alongside
improvement in the signal to noise ratio, translates directly into shortened examina-
tion time for the patient. The multi-faceted signal–noise separation procedure provides
certainty in the face of a greatly over-determined system of linear equations, that the
genuine i.e. physical resonances are identified unequivocally and the metabolite con-
centrations precisely computed. The far more abundant spurious resonances are all
identified as such through pole-zero cancellations, zero or near zero amplitudes and
their marked instability against various levels of truncation and/or noise. Applying the
fast Padé transform to time signals encoded in vivo from benign and cancerous breast
therefore will be the key step for MRS to realize its potential to become a reliable,
cost-effective method for breast cancer diagnostics.
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97. Dž. Belkić, K. Belkić, Molecular imaging and magnetic resonance for improved target definition in
radiation oncology, in Radiation Damage to Biomolecular Systems, ed. by G. Gómez, M.C. Fuss
(Springer, Berlin, 2012), pp. 411–429
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